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2 1 Natural units

1 Natural units

To describe kinematics of some physical system we are free to choose units of
measure of the three basic kinematical physical quantities:length (L), mass (M)
andtime (T). Equivalently, we may choose any three linearly independent combi-
nations of these quantities. The choice ofL, T andM is usually made (e.g. in SI
system of units) because they are most convenient for description of our immedi-
ate experience. However, elementary particles experience a different world, one
governed by the laws of relativistic quantum mechanics.

Natural units in relativistic quantum mechanics are chosen in such a way that
fundamental constants of this theory,c and~, are both equal to one.

[c] = LT−1, [~] = ML−2T−1, and to completely fix our system of units we
specify the unit of energy (ML2T−2):

1 GeV = 1.6 · 10−10 kg m2 s−2 ≈ mp,mn .

What we do in practice is:
- we ignore~ andc in formulae and only restore them at the end (if at all)
- we measureeverythingin GeV, GeV−1, GeV2, ...

Example: Thomson cross section

Total cross section for scattering of classical electromagnetic radiation by a free
electron (Thomson scattering) is, in natural units,

σT =
8πα2

3m2
e

. (1)

To restore~ andc we insert them in the above equation with general powersα and
β, which we determine by requiring that cross section has the dimension of area
(L2):

σT =
8πα2

3m2
e

~
αcβ (2)

[σ] = L2 =
1

M2
(ML2T−1)α(LT−1)β

⇒ α = 2 , β = −2 ,

i.e.

σT =
8πα2

3m2
e

~
2

c2
= 0.665 · 10−24 cm2 = 665 mb . (3)

Linear independence of~ andc implies that this can always be done in a unique
way. �

Following conversion relations are often useful:
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1 fermi = 5.07 GeV−1

1 GeV−2 = 0.389 mb

1 GeV−1 = 6.582 · 10−25 s

1 kg = 5.61 · 1026 GeV

1 m = 5.07 · 1015 GeV−1

1 s = 1.52 · 1024 GeV−1

Exercise 1 Check these relations.

Calculating with GeVs is much more elegant. Usingme = 0.511·10−3 GeV
we get

σT =
8πα2

3m2
e

= 1709 GeV−2 = 665 mb . (4)

right away.

Exercise 2 The decay width of theπ0 particle is

Γ =
1

τ
= 7.7 eV. (5)

Calculate its lifetimeτ in seconds. (By the way, particle’s half-life is equal to
τ ln 2.)

2 Single-particle Dirac equation

2.1 The Dirac equation

Turning the relativistic energy equation

E2 = p2 +m2 . (6)

into a differential equation using the usual substitutions

p→ −i∇ , E → i
∂

∂t
, (7)

results in the Klein-Gordon equation:

(�+m2)ψ(x) = 0 , (8)
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which, interpreted as a single-particle wave equation, has problematic negative
energy solutions. This is due to the negative root inE = ±

√
p2 +m2. Namely,

in relativistic mechanicsthis negative root could be ignored, but here one must
keepall of the complete set of solutions to a differential equation.

In order to overcome this problem Dirac tried the ansatz†

(iβµ∂µ +m)(iγν∂ν −m)ψ(x) = 0 (9)

with βµ andγν to be determined by requiring consistency with the Klein-Gordon
equation. This requiresγµ = βµ and

γµ∂µγ
ν∂ν = ∂µ∂µ , (10)

which in turn implies
(γ0)2 = 1 , (γi)2 = −1 ,

{γµ, γν} ≡ γµγν + γνγµ = 0 for µ 6= ν .

This can be compactly written in form of theanticommutation relations

{γµ, γν} = gµν , gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (11)

These conditions are obviously impossible to satisfy withγ’s being equal to usual
numbers, but we can satisfy them by takingγ’s equal to (at least) four-by-four
matrices.

Now, to satisfy (9) it is enough that one of the two factors in that equation is
zero, and by convention we require this from the second one. Thus we obtain the
Dirac equation:

(iγµ∂µ −m)ψ(x) = 0 . (12)

ψ(x) now has four components and is called theDirac spinor.
One of the most frequently used representations forγ matrices is the original

Dirac representation

γ0 =

(
1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
, (13)

whereσi are the Pauli matrices:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (14)

†ansatz: guess, trial solution (from GermanAnsatz: start, beginning, onset, attack)
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This representation is very convenient for the non-relativistic approximation, since
then the dominant energy terms(iγ0∂0 − . . .−m)ψ(0) turn out to be diagonal.

Two other often used representations are

• the Weyl (or chiral) representation — convenient in the ultra-relativistic
regime (whereE � m)

• the Majorana representation — makes the Dirac equation real; convenient
for Majorana fermionsfor which antiparticles are equal to particles

(Question:Why can we choose at most oneγ matrix to be diagonal?)

Properties of the Pauli matrices:

σi
†

= σi (15)

σi∗ = (iσ2)σi(iσ2) (16)

[σi, σj] = 2iεijkσk (17)

{σi, σj} = 2δij (18)

σiσj = δij + iεijkσk (19)

whereεijk is the totally antisymmetric Levi-Civita tensor (ε123 = ε231 = ε312 = 1,
ε213 = ε321 = ε132 = −1, and all other components are zero).

Exercise 3 Prove that(σ · a)2 = a2 for any three-vectora.

Exercise 4 Using properties of the Pauli matrices, prove thatγ matrices in the
Dirac representation satisfy{γi, γj} = 2gij = −2δij, in accordance with the
anticommutation relations. (Other components of the anticommutation relations,
(γ0)2 = 1, {γ0, γi} = 0, are trivial to prove.)

Exercise 5 Show that in the Dirac representationγ0γµγ0 = γµ
†
.

Exercise 6 Determine the Dirac Hamiltonian by writing the Dirac equation in the
form i∂ψ/∂t = Hψ. Show that the hermiticity of the Dirac Hamiltonian implies
that the relation from the previous exercise is valid regardless of the representa-
tion.

TheFeynman slashnotation,/a ≡ aµγ
µ, is often used.
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2.2 The adjoint Dirac equation and the Dirac current

For constructing the Dirac current we need the equation forψ(x)†. By taking the
Hermitian adjoint of the Dirac equation we get

ψ†γ0(i
←
∂/ +m) = 0 ,

and we define theadjoint spinorψ̄ ≡ ψ†γ0 to get theadjoint Dirac equation

ψ̄(x)(i
←
∂/ +m) = 0 .

ψ̄ is introduced not only to get aesthetically pleasing equations but also because
it can be shown that, unlikeψ†, it transforms covariantly under the Lorentz trans-
formations.

Exercise 7 Check that the currentjµ = ψ̄γµψ is conserved, i.e. that it satisfies
the continuity relation∂µjµ = 0.

Components of this relativistic four-current arejµ = (ρ, j). Note thatρ =
j0 = ψ̄γ0ψ = ψ†ψ > 0, i.e. that probability is positive definite.

2.3 Free-particle solutions of the Dirac equation

Since we are preparing ourselves for the perturbation theory calculations, we need
to consider only free-particle solutions. For solutions in various potentials, see the
literature.

The fact that Dirac spinors satisfy the Klein-Gordon equation suggests the
ansatz

ψ(x) = u(p)e−ipx , (20)

which after inclusion in the Dirac equation gives themomentum space Dirac equa-
tion

(/p−m)u(p) = 0 . (21)

This has two positive-energy solutions

u(p, σ) = N

 χ(σ)

σ · p
E +m

χ(σ)

 , σ = 1, 2 , (22)

where

χ(1) =

(
1
0

)
, χ(2) =

(
0
1

)
, (23)
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and two negative-energy solutions which are then interpreted as positive-energy
antiparticlesolutions

v(p, σ) = −N

 σ · p
E +m

(iσ2)χ(σ)

(iσ2)χ(σ)

 , σ = 1, 2, E > 0 . (24)

N is the normalization constant to be determined later. The momentum-space
Dirac equation for antiparticle solutions is

(/p+m)v(p, σ) = 0 . (25)

It can be shown that the two solutions, one withσ = 1 and another withσ = 2,
correspond to the two spin states of the spin-1/2 particle.

Exercise 8 Determine momentum-space Dirac equations forū(p, σ) andv̄(p, σ).

Normalization

In non-relativistic single-particle quantum mechanics normalization of a wave-
function is straightforward. Probability that the particle is somewhere in space is
equal to one, and this translates into the normalization condition

∫
ψ∗ψ dV = 1.

On the other hand, we will eventually use spinors (22) and (24) in many-particle
quantum field theory so their normalization is not unique. We will choose nor-
malization convention where we have2E particles in the unit volume:∫

unit volume

ρ dV =

∫
unit volume

ψ†ψ dV = 2E (26)

This choice is relativistically covariant because the Lorentz contraction of the vol-
ume element is compensated by the energy change. There are other normalization
conventions with other advantages.

Exercise 9 Determine the normalization constant N conforming to this choice.

Completeness

Exercise 10Using the explicit expressions (22) and (24) show that∑
σ=1,2

u(p, σ)ū(p, σ) = /p+m , (27)∑
σ=1,2

v(p, σ)v̄(p, σ) = /p−m . (28)

These relations are often needed in calculations of Feynman diagrams with unpo-
larized fermions. See later sections.
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Parity and bilinear covariants

The parity transformation:

• P : x→ −x, t→ t

• P : ψ → γ0ψ

Exercise 11Check that the currentjµ = ψ̄γµψ transforms as a vector under par-
ity i.e. thatj0 → j0 andj → −j.

Any fermion current will be of the form̄ψΓψ, whereΓ is some four-by-four
matrix. For construction of interaction Lagrangian we want to use only those
currents that have definite Lorentz transformation properties. To this end we first
define two new matrices:

γ5 ≡ iγ0γ1γ2γ3 Dirac rep.
=

(
0 1
1 0

)
, {γ5, γµ} = 0 , (29)

σµν ≡ i

2
[γµ, γν ] , σµν = −σνµ . (30)

Now ψ̄Γψ will transform covariantly ifΓ is one of the matrices given in the
following table. Transformation properties of̄ψΓψ, the number of differentγ
matrices inΓ, and the number of components ofΓ are also displayed.

Γ transforms as # ofγ’s # of components
1 scalar 0 1
γµ vector 1 4
σµν tensor 2 6
γ5γµ axial vector 3 4
γ5 pseudoscalar 4 1

This exhausts all possibilities. The total number of components is 16, meaning
that the set{1, γµ, σµν , γ5γµ, γ5} makes a complete basis for any four-by-four
matrix. Suchψ̄Γψ currents are calledbilinear covariants.

3 Free quantum fields

Single-particle Dirac equation is (a) not exactly right even for single-particle sys-
tems such as the H-atom, and (b) unable to treat many-particle processes such as
theβ-decayn→ p e−ν̄. We have to upgrade to quantum field theory.
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Any Dirac field is some superposition of the complete set

u(p, σ)e−ipx , v(p, σ)eipx , σ = 1, 2, p ∈ R3

and we can write it as

ψ(x) =
∑
σ

∫
d3p√

(2π)32E

[
u(p, σ)a(p, σ)e−ipx + v(p, σ)ac†(p, σ)eipx

]
. (31)

Here 1/
√

(2π)32E is a normalization factor (there are many different conven-
tions), anda(p, σ) andac†(p, σ) are expansion coefficients. To make this aquan-
tum Dirac fieldwe promote these coefficients to the rank of operators by imposing
theanticommutationrelations

{a(p, σ), a†(p′, σ′)} = δσσ′δ
3(p− p′), (32)

and similarly forac(p, σ). (For bosonic fields we would have acommutation
relations instead.) This is similar to the promotion of position and momentum
to the rank of operators by the[xi, pj] = i~δij commutation relations, which is
why is this transition from the single-particle quantum theory to the quantum field
theory sometimes calledsecond quantization.

Operatora†, when operating on vacuum state|0〉, creates one-particle state
|p, σ〉

a†(p, σ)|0〉 = |p, σ〉 , (33)

and this is the reason that it is named acreationoperator. Similarly,a is ananni-
hilation operator

a(p, σ)|p, σ〉 = |0〉 , (34)

andac† andac are creation and annihilation operators for antiparticle states (c in
ac stands for “conjugated”).

Processes in particle physics are mostly calculated in the framework of the
theory of such fields —quantum field theory. This theory can be described at
various levels of rigor but in any case is complicated enough to be beyond the
scope of these notes.

However, predictions of quantum field theory pertaining to the elementary
particle interactions can often be calculated using a relatively simple “recipe” —
Feynman diagrams.

Before we turn to describing the method of Feynman diagrams, let us just
specify other quantum fields that take part in the elementary particle physics inter-
actions. All these arefreefields, and interactions are treated as their perturbations.
Each particle type (electron, photon, Higgs boson, ...) has its own quantum field.
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3.1 Spin 0: scalar field

- E.g. Higgs boson, pions, ...

φ(x) =

∫
d3p√

(2π)32E

[
a(p)e−ipx + ac†(p)eipx

]
(35)

3.2 Spin 1/2: the Dirac field

- E.g. quarks, leptons

We have already specified the Dirac spin-1/2 field. There are other types: Weyl
and Majorana spin-1/2 fields but they are beyond our scope.

3.3 Spin 1: vector field

Either

• massive (e.g. W,Z weak bosons) or

• massless (e.g. photon)

Aµ(x) =
∑
λ

∫
d3p√

(2π)32E

[
εµ(p, λ)a(p, λ)e−ipx + εµ∗(p, λ)a†(p, λ)eipx

]
(36)

εµ(p, λ) is a polarization vector. For massive particles it obeys

pµε
µ(p, λ) = 0 (37)

automatically, whereas in the massless case this condition can be imposed thanks
to gauge invariance (Lorentz gauge condition). This means that there are only
three independent polarizations of a massive vector particle:λ = 1, 2, 3 or λ =
+,−, 0. In massless case gauge symmetry can be further exploited to eliminate
one more polarization state leaving us with only two:λ = 1, 2 or λ = +,−.

Normalization of polarization vectors is such that

ε∗(p, λ) · ε(p, λ) = −1 . (38)

E.g. for a massive particle moving along thez-axis (p = (E, 0, 0, |p|)) we can
take

ε(p,±) = ∓ 1√
2


0
1
±i
0

 , ε(p, 0) =
1

m


|p|
0
0
E

 (39)
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Exercise 12Calculate ∑
λ

εµ∗(p, λ)εν(p, λ)

Hint: Write it in the most general form(Agµν + Bpµpν) and then determineA
andB.

The obtained result obviously cannot be simply extrapolated to the massless
case via the limitm → 0. Gauge symmetry makes massless polarization sum
somewhat more complicated but for the purpose of the Feynman diagram calcu-
lations it is permissible to use just the following relation∑

λ

εµ∗(p, λ)εν(p, λ) = −gµν .

4 Golden rules for decays and scatterings

Principal experimental observables of particle physics are

• scattering cross sectionσ(1 + 2→ 1′ + 2′ + · · ·+ n′)

• decay widthΓ(1→ 1′ + 2′ + · · ·+ n′)

On the other hand, theory is defined in terms of Lagrangian density of quantum
fields, e.g.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4 .

How to calculateσ’s andΓ’s fromL?
To calculate rate of transition from the state|α〉 to the state|β〉 in the pres-

ence of the interaction potentialVI in non-relativistic quantum theory we have the
Fermi’s Golden Rule(

α→ β

transition rate

)
=

2π

~

|〈β|VI |α〉|2 ×
(

density of final
quantum states

)
. (40)

This is in the lowest order perturbation theory. For higher orders we have terms
with products of more interaction potential matrix elements〈|VI |〉.

In quantum field theory there is a counterpart to these matrix elements — the
S-matrix:

〈β|VI |α〉+ (higher-order terms) −→ 〈β|S|α〉 . (41)

On one side,S-matrix elements can be perturbatively calculated (knowing the
interaction Lagrangian/Hamiltonian) with the help of theDyson series

S = 1− i
∫
d4x1H(x1) +

(−i)2

2!

∫
d4x1 d

4x2 T{H(x1)H(x2)}+ · · · , (42)
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and on another, we have “golden rules” that associate these matrix elements with
cross-sections and decay widths.

It is convenient to express these golden rules in terms of theFeynman invariant
amplitudeM which is obtained by stripping some kinematical factors off theS-
matrix:

〈β|S|α〉 = δβα − i(2π)4δ4(pβ − pα)Mβα

∏
i=α,β

1√
(2π)3 2Ei

. (43)

Now we have two rules:

• Partial decay rate of1→ 1′ + 2′ + · · ·+ n′

dΓ =
1

2E1

|Mβα|2 (2π)4δ4(p1 − p′1 − · · · − p′n)
n∏
i=1

d3p′i
(2π)3 2E ′i

, (44)

• Differential cross section for a scattering1 + 2→ 1′ + 2′ + · · ·+ n′

dσ =
1

uα

1

2E1

1

2E2

|Mβα|2 (2π)4δ4(p1 + p2− p′1− · · · − p′n)
n∏
i=1

d3p′i
(2π)3 2E ′i

,

(45)

whereuα is the relative velocity of particles 1 and 2:

uα =

√
(p1 · p2)2 −m2

1m
2
2

E1E2

, (46)

and|M|2 is the Feynman invariant amplitude averaged over unmeasured particle
spins (see Section 6.1). The dimension ofM, in units of energy, is

• for decays[M] = 3− n

• for scattering of two particles[M] = 2− n

wheren is the number of produced particles.

So calculation of some observable quantity consists of two stages:

1. Determination of|M|2. For this we use the method of Feynman diagrams
to be introduced in the next section.

2. Integration over the Lorentz invariant phase space

dLips = (2π)4δ4(p1 + p2 − p′1 − · · · − p′n)
n∏
i=1

d3p′i
(2π)3 2E ′i

.
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5 Feynman diagrams

Example: φ4-theory

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − g

4!
φ4

• Free (kinetic) Lagrangian (terms with exactly two fields) determines parti-
cles of the theory and their propagators. Here we have just one scalar field:

φ

• Interaction Lagrangian (terms with three or more fields) determines possible
vertices. Here, again, there is just one vertex:

φ

φ

φ

φ

We construct all possible diagrams with fixed outer particles. E.g. for scatter-
ing of two scalar particles in this theory we would have

M(1 + 2→ 3 + 4) = + + + . . .

1

2

3

4
t

In these diagrams time flows from left to right. Some people draw Feynman
diagrams with time flowing up, which is more in accordance with the way we
usually draw space-time in relativity physics.

Since each vertex corresponds to one interaction Lagrangian (Hamiltonian)
term in (42), diagrams with loops correspond to higher orders of perturbation
theory. Here we will work only to the lowest order, so we will usetree diagrams
only.

To actually write down the Feynman amplitudeM, we have a set ofFeynman
rules that associate factors with elements of the Feynman diagram. In particular,
to get−iM we construct the Feynman rules in the following way:

• the vertex factor is just thei times the interaction term in the (momentum
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space) Lagrangian with all fields removed:

iLI = −i g
4!
φ4 removing fields⇒

φ

φ

φ

φ

= −i g
4!

(47)

• the propagator isi times the inverse of the kinetic operator (defined by the
free equation of motion) in the momentum space:

Lfree
Euler-Lagrange eq.−→ (∂µ∂

µ +m2)φ = 0 (Klein-Gordon eq.) (48)

Going to the momentum space using the substitution∂µ → −ipµ and then
taking the inverse gives:

(p2 −m2)φ = 0 ⇒ φ =
i

p2 −m2
(49)

(Actually, the correct Feynman propagator isi/(p2 −m2 + iε), but for our
purposes we can ignore the infinitesimaliε term.)

• External lines are represented by the appropriate polarization vector or spinor
(the one that stands by the appropriate creation or annihilation operator in
the fields (31), (35), (36) and their conjugates):

particle Feynman rule
ingoing fermion u
outgoing fermion ū
ingoing antifermion v̄
outgoing antifermion v
ingoing photon εµ

outgoing photon εµ∗

ingoing scalar 1
outgoing scalar 1

So the tree-level contribution to the scalar-scalar scattering amplitude in this
φ4 theory would be just

−iM = −i g
4!
. (50)

�
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Exercise 13Determine the Feynman rules for the electron propagator and for the
only vertex of quantum electrodynamics (QED):

L = ψ̄(i/∂ + e/A−m)ψ − 1

4
FµνF

µν F µν = ∂µAν − ∂νAµ . (51)

Note that also

p =
i
∑

σ u(p, σ)ū(p, σ)

p2 −m2
, (52)

i.e. the electron propagator is just the scalar propagator multiplied by the polar-
ization sum. It is nice that this generalizes to propagators of all particles. This is
very helpful since inverting the photon kinetic operator is non-trivial due to gauge
symmetry complications. Hence, propagators of vector particles are

massive: p, m =

−i
(
gµν − pµpν

m2

)
p2 −m2

, (53)

massless: p =
−igµν

p2
. (54)

This is in principlealmostall we need to know to be able to calculate the
Feynman amplitude of any given process. Note that propagators and external-line
polarization vectors are determined only by the particle type (its spin and mass)
so that the corresponding rules above are not restricted only to theφ4 theory and
QED, but will apply to all theories of scalars, spin-1 vector bosons and Dirac
fermions (such as the standard model). The only additional information we need
are the vertex factors.

“Almost” in the preceding paragraph alludes to the fact that in general Feyn-
man diagram calculation there are several additional subtleties:

• In loop diagrams some internal momenta are undetermined and we have to
integrate over those. Also, there is an additional factor (-1) for each closed
fermion loop. Since we will do tree-level diagrams only, we can ignore this.

• There are some combinatoric numerical factors when identical fields come
into a single vertex.

• Sometimes there is a relative (-) sign between diagrams.

• There is a symmetry factor if there are identical particles in the final state.

These will be explained if we encounter some case where they are relevant.
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6 e+e− → µ+µ− in QED

There is only one contributing tree-level diagram:
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We write down the amplitude using the Feynman rules of QED and following
fermion lines backwards. Order of lines themselves is unimportant.

−iM = [ū(p3, σ3)(ieγν)v(p4, σ4)]
−igµν

(p1 + p2)2
[v̄(p2, σ2)(ieγµ)u(p1, σ1)] ,

(55)
or, introducing abbreviationu1 ≡ u(p1, σ1),

M =
e2

(p1 + p2)2
[ū3γµv4][v̄2γ

µu1] . (56)

Exercise 14Draw Feynman diagram(s) and write down the amplitude for Comp-
ton scatteringγe− → γe−.

6.1 Summing over polarizations

If we knew momenta and polarizations of all external particles, we could calculate
M explicitly. However, experiments are often done with unpolarized particles so
we have to sum over the polarizations (spins) of the final particles and average
over the polarizations (spins) of the initial ones:

|M|2 → |M|2 =
1

2

1

2

∑
σ1σ2︸ ︷︷ ︸

avg. over initial pol.

sum over final pol.︷︸︸︷∑
σ3σ4

|M|2 . (57)

Factors1/2 are due to the fact that each initial fermion has two polarization
(spin) states.
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(Question:Why we sum probabilities and not amplitudes?)

In the calculation of|M|2 =M∗M, the following identity is needed

[ūγµv]∗ = [u†γ0γµv]† = v†γµ†γ0u = [v̄γµu] . (58)

Thus,

|M|2 =
e4

4(p1 + p2)4

∑
σ1,2,3,4

[v̄4γµu3][ū1γ
µv2][ū3γνv4][v̄2γ

νu1] . (59)

6.2 Casimir trick

Sums over polarizations are easily performed using the following trick. First we
write

∑
[ū1γ

µv2][v̄2γ
νu1] with explicit spinor indicesα, β, γ, δ = 1, 2, 3, 4:∑

σ1σ2

ū1αγ
µ
αβv2β v̄2γγ

ν
γδu1δ . (60)

We can now moveu1δ to the front (u1δ is just a number, element ofu1 vector, so
it commutes with everything), and then use the completeness relations (27) and
(28), ∑

σ1

u1δ ū1α = (/p1
+m1)δα ,∑

σ2

v2β v̄2γ = (/p2
−m2)βγ ,

which turn sum (60) into

(/p1
+m1)δα γ

µ
αβ (/p2

−m2)βγ γ
ν
γδ = Tr[(/p1

+m1)γµ(/p2
−m2)γν ] . (61)

This means that

|M|2 =
e4

4(p1 + p2)4
Tr[(/p1

+m1)γµ(/p2
−m2)γν ] Tr[(/p4

−m4)γµ(/p3
+m3)γν ] .

(62)
Thus we got rid off all the spinors and we are left only with traces ofγ matri-

ces. These can be evaluated using the relations from the following section.

6.3 Traces and contraction identities ofγ matrices

All are consequence of the anticommutation relations{γµ, γν} = gµν , {γµ, γ5} =
0, (γ5)2 = 1, and of nothing else!
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Trace identities

1. Trace of an odd number ofγ’s vanishes:

Tr(γµ1γµ2 · · · γµ2n+1) = Tr(γµ1γµ2 · · · γµ2n+1

1︷︸︸︷
γ5γ5)

(movingγ5 over eachγµi ) = −Tr(γ5γµ1γµ2 · · · γµ2n+1γ5)

(cyclic property of trace) = −Tr(γµ1γµ2 · · · γµ2n+1γ5γ5)

= −Tr(γµ1γµ2 · · · γµ2n+1)

= 0

2. Tr 1 = 4

3.
Trγµγν = Tr(2gµν − γνγµ)

(2.)
= 8gµν − Trγνγµ = 8gµν − Trγµγν

⇒ 2Trγµγν = 8gµν ⇒ Trγµγν = 4gµν

This also implies:
Tr/a/b = 4a · b

4. Exercise 15Calculate Tr(γµγνγργσ). Hint: Move γσ all the way to the
left, using the anticommutation relations. Then use 3.

Homework:Prove that Tr(γµ1γµ2 · · · γµ2n) has(2n− 1)!! terms.

5. Tr(γ5γµ1γµ2 · · · γµ2n+1) = 0. This follows from 1. and from the fact thatγ5

consists of even number ofγ’s.

6. Trγ5 = Tr(γ0γ0γ5) = −Tr(γ0γ5γ0) = −Trγ5 = 0

7. Tr(γ5γµγν) = 0. (Same trick as above, withγα 6= µ, ν instead ofγ0.)

8. Tr(γ5γµγνγργσ) = −4iεµνρσ, with ε0123 = 1. Careful: convention with
ε0123 = −1 is also in use.

Contraction identities

1.

γµγµ =
1

2
gµν (γµγν + γνγµ)︸ ︷︷ ︸

2gµν

= gµνg
µν = 4

2.
γµ γαγµ︸︷︷︸
−γµγα+2gαµ

= −4γα + 2γα = −2γα
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3. Exercise 16Contractγµγαγβγµ.

4. γµγαγβγγγµ = −2γγγβγα

Exercise 17Calculate traces in|M|2:

Tr[(/p1
+m1)γµ(/p2

−m2)γν ] = ?

Tr[(/p4
−m4)γµ(/p3

+m3)γν ] = ?

Exercise 18Calculate|M|2

6.4 Kinematics in the center-of-mass frame

In e+e− coliders oftenpi � me,mµ, i = 1, . . . , 4, so we can take

mi → 0 “high-energy” or “extreme relativistic” limit

Then

|M|2 =
8e4

(p1 + p2)4
[(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)] (63)

To calculate scattering cross-sectionσ we have to specialize to some particular
frame (σ is not frame-independent). Fore+e− colliders the most relevant is the
center-of-mass (CM) frame:

������

���

	�
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Exercise 19Express|M|2 in terms ofE andθ.
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6.5 Integration over two-particle phase space

Now we can use the “golden rule” (45) for the1+2→ 3+4 differential scattering
cross-section

dσ =
1

uα

1

2E1

1

2E2

|M|2 dLips2 (64)

where two-particle phase space to be integrated over is

dLips2 = (2π)4δ4(p1 + p2 − p3 − p4)
d3p3

(2π)3 2E3

d3p4

(2π)3 2E4

. (65)

First we integrate over four out of six integration variables, and we do this in
general frame.δ-function makes the integration overd3p4 trivial giving

dLips2 =
1

(2π)2 4E3E4

δ(E1 + E2 − E3 − E4) d3p3︸︷︷︸
p2

3d|p3|dΩ3

(66)

Now we integrate overd|p3| by noting thatE3 andE4 are functions of|p3|

E3 = E3(|p3|) =
√
p2

3 +m2
3 ,

E4 =
√
p2

4 +m2
4 =

√
p2

3 +m2
4 ,

and byδ-function relation

δ(E1 +E2−
√
p2

3 +m2
3−
√
p2

3 +m2
4) = δ[f(|p3|)] =

δ(|p3| − |p(0)
3 |)

|f ′(|p3|)||p3|=|p(0)
3 |

. (67)

Here |p3| is just the integration variable and|p(0)
3 | is the zero off(|p3|) i.e. the

actual momentum of the third particle. After we integrate overd|p3| we put
|p(0)

3 | → |p3|.
Since

f ′(|p3|) = −E3 + E4

E3E4

|p3| , (68)

we get

dLips2 =
|p3|dΩ

16π2(E1 + E2)
. (69)

Now we again specialize to the CM frame and note that the flux factor is

4E1E2uα = 4
√

(p1 · p2)2 −m2
1m

2
2 = 4|p1|(E1 + E2) , (70)



6 e+e− → µ+µ− in QED 21

giving finally
dσCM

dΩ
=

1

64π2(E1 + E2)2

|p3|
|p1|
|M|2 . (71)

Note that we kept masses in each step so this formula is generally valid for any
CM scattering.

For our particulare−e+ → µ−µ+ scattering this gives the final result for dif-
ferential cross-section (introducing the fine structure constantα = e2/(4π))

dσ

dΩ
=

α2

16E2
(1 + cos2 θ) . (72)

Exercise 20 Integrate this to get the total cross sectionσ.

Note that it is obvious thatσ ∝ α2, and that dimensional analysis requires
σ ∝ 1/E2, so only angular dependence(1 + cos2 θ) tests QED as a theory of
leptons and photons.

6.6 Summary of steps

To recapitulate, calculating scattering cross-section (or decay width) consists of
the following steps:

1. drawing the Feynman diagram(s)

2. writing−iM using the Feynman rules

3. squaringM and using the Casimir trick to get traces

4. evaluating traces

5. applying kinematics of the chosen frame

6. integrating over the phase space

6.7 Mandelstam variables

Mandelstam variabless, t andu are often used in scattering calculations. They
are defined (for1 + 2→ 3 + 4 scattering) as

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2

Exercise 21Prove thats+ t+ u = m2
1 +m2

2 +m2
3 +m2

4



22 6 e+e− → µ+µ− in QED

This means that only two Mandelstam variables are independent. Their main
advantage is that they are Lorentz invariant which renders them convenient for
Feynman amplitude calculations. Only at the end we can exchange them for “ex-
perimenter’s” variablesE andθ.

Exercise 22Express|M|2 for e−e+ → µ−µ+ scattering in terms of Mandelstam
variables.
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Appendix: Doing Feynman diagrams on a computer

There are several computer programs that can perform some or all of the steps in
the calculation of Feynman diagrams. Here is one simple session with one of such
programs,FeynCalc for Wolfram’s Mathematica, where we calculate the same
process,e−e+ → µ−µ+, that we just calculated by hand.

FeynCalc demonstration

This  Mathematica  notebook  demonstrates  computer  calculation  of  Feynman  invariant  amplitude  for
e-  e+ ® Μ-  Μ+ scattering, using Feyncalc package.

First we load FeynCalc into Mathematica

In[1]:= << HighEnergyPhysics‘fc‘

FeynCalc 4.1.0.3b     Evaluate ?FeynCalc for help or visit www.feyncalc.org

Spin−averaged Feynman amplitude squared È M È2����������
 after using Feynman rules and applying the Casimir trick:

In[2]:= Msq =
e4

�������������������������������
4 Hp1 + p2L4

 Contract@Tr@HGS@p1D + meL.GA@ΜD.HGS@p2D - meL.GA@ΝDD 

Tr@HGS@p4D - mmL.GA@ΜD.HGS@p3D + mmL.GA@ΝDDD
Out[2]=

1
��������������������������������������
4 Hp1 + p2L4

He4 H64 mm2 me2 + 32 p3 × p4 me2 + 32 mm2 p1 × p2 + 32 p1 × p4 p2 × p3 + 32 p1 × p3 p2 × p4LL
Traces were evaluated and contractions performed automatically. Now we introduce Mandelstam variables by substitu-
tion rules,

In[3]:= prod@a_, b_D := Pair@Momentum@aD, Momentum@bDD;
mandelstam = 9prod@p1, p2D ® Hs - me2 - me2L �2, prod@p3, p4D ® Hs - mm2 - mm2L �2,

prod@p1, p3D ® Ht - me2 - mm2L �2, prod@p2, p4D ® Ht - me2 - mm2L �2,
prod@p1, p4D ® Hu - me2 - mm2L �2, prod@p2, p3D ® Hu - me2 - mm2L �2, Hp1 + p2L ®

�!!!!
s =;

and apply these substitutions to our amplitude:

In[5]:= Msq �. mandelstam

Out[5]=
1

�������������
4 s2

Ie4 I64 mm2 me2 + 16 Hs - 2 mm2 L me2 + 8 H-me2 - mm2 + tL2
+ 8 H-me2 - mm2 + uL2

+ 16 mm2 Hs - 2 me2 LMM
This result can  be simplified by eliminating one Mandelstam variable:

In[6]:= Simplify@TrickMandelstam@%, s, t, u, 2 me2 + 2 mm2DD
Out[6]=

2 e4 H2 me4 + 4 Hmm2 - uL me2 + 2 mm4 + s2 + 2 u2 - 4 mm2 u + 2 s uL
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

s2

If we go to ultra−relativistic  limit, we get result in agreement with our hand calculation:

In[7]:= Simplify@%% �. 8mm ® 0, me ® 0<D
Out[7]=

2 e4 Ht2 + u2 L
�����������������������������������������

s2

FeynCalcDemo.nb 1


