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2 1 Natural units

1 Natural units

To describe kinematics of some physical system we are free to choose units of
measure of the three basic kinematical physical quantiteeggyth (L) mass (M)
andtime (T) Equivalently, we may choose any three linearly independent combi-
nations of these quantities. The choicelofl" and M is usually made (e.g. in SI
system of units) because they are most convenient for description of our immedi-
ate experience. However, elementary particles experience a different world, one
governed by the laws of relativistic qguantum mechanics.

Natural units in relativistic quantum mechanics are chosen in such a way that
fundamental constants of this theoryand#h, are both equal to one.

] = LT, [h] = ML~2T~1, and to completely fix our system of units we
specify the unit of energyM{ L*>T—2):

1GeV=1.6-10"""kg n? s 2 A My, My,

What we do in practice is:
- we ignorei andc in formulae and only restore them at the end (if at all)
- we measureverythingn GeV, GeV!, Ge\, ...

Example: Thomson cross section

Total cross section for scattering of classical electromagnetic radiation by a free
electron (Thomson scattering) is, in natural units,

8ra?
— = .
3mg

Jor (1)

To restoreh andc we insert them in the above equation with general poweasd

(3, which we determine by requiring that cross section has the dimension of area
(L?):

or = 837;: o @)
(0] = L? = %(MLQTl)a(LTl)ﬁ
= a=2, = -2,
i.e. Sra? B2
or=o 5= 0.665 - 10~* cnm? = 665 mb . (3)

Linear independence d@f andc implies that this can always be done in a unique
way. B

Following conversion relations are often useful:
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1fermi = 5.07GeV!

1GevV? = 0.389mb

1GevV! = 6.582-107%s
1kg = 5.61-10%GeV
Im = 5.07-10"°Gev!
Is = 1.52-10*GeVv!

Exercise 1 Check these relations.

Calculating with GeVs is much more elegant. Using = 0.5121072 GeV
we get

8 2
op = % 1709 GeV-2 = 665 mb . 4)
3m2

e

right away.

Exercise 2 The decay width of the particle is

1
I' =

T

=T7.7eV. )

Calculate its lifetimer in seconds. (By the way, particle’s half-life is equal to
TIn2.)

2 Single-particle Dirac equation
2.1 The Dirac equation
Turning the relativistic energy equation
E* =p*+m*. (6)

into a differential equation using the usual substitutions

0
— —1 E—i— 7
p— =iV, iy (7)

results in the Klein-Gordon equation:

@O+ m?*)i(x) =0, (8)
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which, interpreted as a single-particle wave equation, has problematic negative
energy solutions. This is due to the negative rookia= ++/p? + m2. Namely,
in relativistic mechanicghis negative root could be ignored, but here one must
keepall of the complete set of solutions to a differential equation.

In order to overcome this problem Dirac tried the ansatz

(i6" 0y + m) (i7" 0, — m)(z) = 0 9)
with g* and~” to be determined by requiring consistency with the Klein-Gordon
equation. This requireg* = 5+ and

0,70, = 0"0, , (10)
which in turn implies '
(70)2 =1, ('71>2 =-1,
(Y 4" =y " =0 foru#v.
This can be compactly written in form of tlamticommutation relations

1 0 0 0
0 -1 0 0
BV By _
(A= 9=y 0 1 o (11)
00 0 -1

These conditions are obviously impossible to satisfy withbeing equal to usual
numbers, but we can satisfy them by taking equal to (at least) four-by-four
matrices.

Now, to satisfy (9) it is enough that one of the two factors in that equation is
zero, and by convention we require this from the second one. Thus we obtain the
Dirac equation

(i7", — m)y(z) = 0. (12)
¥ (x) now has four components and is called Bieac spinor.

One of the most frequently used representations foratrices is the original
Dirac representation

(o h) = (%) 13)

whereo’ are the Pauli matrices:

1 _ 01 2 O—Z 3 1 0
"_(1 0) U‘(z 0) "‘(0—1)' (14)

fansatz guess, trial solution (from Germainsatz start, beginning, onset, attack)
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This representation is very convenient for the non-relativistic approximation, since
then the dominant energy terrig°d, — ... — m)«(0) turn out to be diagonal.
Two other often used representations are

e the Weyl (or chiral) representation — convenient in the ultra-relativistic
regime (wherety > m)

¢ the Majorana representation — makes the Dirac equation real; convenient
for Majorana fermiondor which antiparticles are equal to particles

(Question:Why can we choose at most ofmenatrix to be diagonal?)

Properties of the Pauli matrices:

o =0 (15)

o™ = (io?)o'(io?) (16)

(07, 07] = 2ie Tk g" (17)
{o",07} =24 (18)
olod = 69 4 etk (19)

wheree?* is the totally antisymmetric Levi-Civita tensar'¢? = €231 = €312 = 1,
€213 = 321 = 132 — 1, and all other components are zero).

Exercise 3 Prove thato - a)? = a? for any three-vectoa.

Exercise 4 Using properties of the Pauli matrices, prove thanatrices in the
Dirac representation satisfiy’, 7/} = 2¢% = —2§%, in accordance with the
anticommutation relations. (Other components of the anticommutation relations,
(°)? =1, {7" ~'} = 0, are trivial to prove.)

Exercise 5 Show that in the Dirac representatigfry/~° = ~+'.

Exercise 6 Determine the Dirac Hamiltonian by writing the Dirac equation in the
form ioyw /ot = Hv. Show that the hermiticity of the Dirac Hamiltonian implies
that the relation from the previous exercise is valid regardless of the representa-
tion.

TheFeynman slashotation,¢ = a,~*, is often used.



6 2 Single-patrticle Dirac equation

2.2 The adjoint Dirac equation and the Dirac current

For constructing the Dirac current we need the equationvfan’. By taking the
Hermitian adjoint of the Dirac equation we get

0GP +m) =0,

and we define thadjoint spinory = v to get theadjoint Dirac equation

G(x)(i P +m)=0.

1 is introduced not only to get aesthetically pleasing equations but also because
it can be shown that, unlikeT, it transforms covariantly under the Lorentz trans-
formations.

Exercise 7 Check that the current* = ¢~ is conserved, i.e. that it satisfies
the continuity relatiord, j* = 0.

Components of this relativistic four-current gif¢ = (p,j). Note thatp =
39 = % = Ty > 0, i.e. that probability is positive definite.

2.3 Free-particle solutions of the Dirac equation

Since we are preparing ourselves for the perturbation theory calculations, we need
to consider only free-particle solutions. For solutions in various potentials, see the
literature.

The fact that Dirac spinors satisfy the Klein-Gordon equation suggests the
ansatz

U(@) = u(p)e™™, (20)

which after inclusion in the Dirac equation gives thementum space Dirac equa-
tion

(p —mu(p) =0. (21)
This has two positive-energy solutions
X(U)
u(p70) =N ’ 0= ]-72 ) (22)
i )
E+m

where

X(”:(é>, x@):((l)), (23)
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and two negative-energy solutions which are then interpreted as positive-energy
antiparticle solutions

7L (ig?)x@
U(p, U) =-N E+m
(i0?)x

L o=1,2, E>0. (24

N is the normalization constant to be determined later. The momentum-space
Dirac equation for antiparticle solutions is

(p+mv(p,o)=0. (25)

It can be shown that the two solutions, one with- 1 and another witlr = 2,
correspond to the two spin states of the spin-1/2 particle.

Exercise 8 Determine momentum-space Dirac equationsifer, ) andv(p, o).

Normalization

In non-relativistic single-particle quantum mechanics normalization of a wave-
function is straightforward. Probability that the particle is somewhere in space is
equal to one, and this translates into the normalization condjtioty dV' = 1.

On the other hand, we will eventually use spinors (22) and (24) in many-patrticle
quantum field theory so their normalization is not unique. We will choose nor-
malization convention where we ha¥é& particles in the unit volume:

/ pdV = / YipdV = 2F (26)

unit volume unit volume

This choice is relativistically covariant because the Lorentz contraction of the vol-
ume element is compensated by the energy change. There are other normalization
conventions with other advantages.

Exercise 9 Determine the normalization constant N conforming to this choice.

Completeness

Exercise 10Using the explicit expressions (22) and (24) show that

> ulp.o)u(p.o) = p+m, (27)
Z v(p,0)v(p,o) = p—m. (28)

These relations are often needed in calculations of Feynman diagrams with unpo-
larized fermions. See later sections.
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Parity and bilinear covariants

The parity transformation:
o Pix— —x,t—1t
o P:yp— %

Exercise 11 Check that the current’ = ¢v*1) transforms as a vector under par-
ity i.e. thatj® — j° andj — —j.

Any fermion current will be of the formyI'y, wherel is some four-by-four
matrix. For construction of interaction Lagrangian we want to use only those
currents that have definite Lorentz transformation properties. To this end we first
define two new matrices:

. 3 Di 01
7P’ =iyt TE ( 10 ) o =0, (29)
ot = %[’y”, v, o =—o"". (30)

Now /Ty will transform covariantly ifl" is one of the matrices given in the
following table. Transformation properties ¢fi'y), the number of differenty
matrices inl’, and the number of componentsioare also displayed.

' transformsas #of's # of components

1 scalar 0 1
ol vector 1 4
ot tensor 2 6

~°#  axial vector 3 4
~®>  pseudoscalar 4 1

This exhausts all possibilities. The total number of components is 16, meaning
that the sef{1,~", 0", v>~v*,v°} makes a complete basis for any four-by-four
matrix. SuchyI'iy currents are calledilinear covariants

3 Free quantum fields

Single-particle Dirac equation is (a) not exactly right even for single-particle sys-
tems such as the H-atom, and (b) unable to treat many-particle processes such as
the -decayn — pe~ 1. We have to upgrade to quantum field theory.
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Any Dirac field is some superposition of the complete set
u(p,o)e” | wv(p,0)e?, oc=12, pcR’

and we can write it as
d3p iz ot ipz
v =3 [ T [P . ) (o) ] @)

Here1/./(27)32FE is a normalization factor (there are many different conven-
tions), andu(p, o) anda“(p, o) are expansion coefficients. To make thiguan-

tum Dirac fieldwe promote these coefficients to the rank of operators by imposing
theanticommutatiomelations

{CL(p, O'),CLT(p/,O'/)} = (5001(53@7 _p/)u (32)

and similarly fora®(p, o). (For bosonic fields we would have @mmmutation
relations instead.) This is similar to the promotion of position and momentum
to the rank of operators by the;, p;] = ihd;; commutation relations, which is
why is this transition from the single-particle quantum theory to the quantum field
theory sometimes calleskcond quantization

Operatora’, when operating on vacuum stdt®, creates one-particle state

|p, o)
a'(p,0)|0) = |p, o), (33)

and this is the reason that it is namedraationoperator. Similarlyg is ananni-
hilation operator

a(p,o)|p, o) = 10) (34)

anda‘’ anda® are creation and annihilation operators for antiparticle states (
a¢ stands for “conjugated”).

Processes in particle physics are mostly calculated in the framework of the
theory of such fields —gquantum field theory This theory can be described at
various levels of rigor but in any case is complicated enough to be beyond the
scope of these notes.

However, predictions of quantum field theory pertaining to the elementary
particle interactions can often be calculated using a relatively simple “recipe” —
Feynman diagrams

Before we turn to describing the method of Feynman diagrams, let us just
specify other quantum fields that take part in the elementary particle physics inter-
actions. All these arreefields, and interactions are treated as their perturbations.
Each particle type (electron, photon, Higgs boson, ...) has its own quantum field.
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3.1 Spin O: scalar field
- E.g. Higgs boson, pions, ...

e T 4 gt (p)eipﬂ (35)

_ dp 1.
gb(ZL‘) = / \/m [ (p

3.2 Spin 1/2: the Dirac field

- E.g. quarks, leptons

We have already specified the Dirac spin-1/2 field. There are other types: Weyl
and Majorana spin-1/2 fields but they are beyond our scope.

3.3 Spin 1: vector field
Either

e massive (e.g. W,Z weak bosons) or

e massless (e.g. photon)

d3p . 4
AP (x) = /7 é(p, Na(p, \)e P + *(p, N)a'(p, \)e™”
() ZA: (%)32E[(p)(p) (p. Na'(p, \)e'™]
(36)
e*(p, \) is a polarization vector. For massive particles it obeys

pu€ (P, A) =0 (37)

automatically, whereas in the massless case this condition can be imposed thanks

to gauge invariance (Lorentz gauge condition). This means that there are only

three independent polarizations of a massive vector particle: 1,2,3 or A =

+, —,0. In massless case gauge symmetry can be further exploited to eliminate

one more polarization state leaving us with only two= 1,2 or A = +, —.
Normalization of polarization vectors is such that

E.g. for a massive particle moving along thexis (p = (£, 0,0, |p|)) we can
take

1 0 1 p|
1 0
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Exercise 12 Calculate
> e (p, Ve’ (p, \)
A
Hint: Write it in the most general formAg"” + Bptp”) and then determingl
andB.

The obtained result obviously cannot be simply extrapolated to the massless
case via the limitn. — 0. Gauge symmetry makes massless polarization sum
somewhat more complicated but for the purpose of the Feynman diagram calcu-
lations it is permissible to use just the following relation

> e (D, Ve (p, ) = —g

A

4 Golden rules for decays and scatterings

Principal experimental observables of particle physics are
e scattering cross sectior(l+2 — 1'+2' +--- +n/)
e decay widthl'(1 — 1"+ 2"+ ---+n/)

Onthe other hand, theory is defined in terms of Lagrangian density of quantum
fields, e.g. X .
2,2 9 4
How to calculater’s andI™s from L£?
To calculate rate of transition from the state to the statg) in the pres-
ence of the interaction potenti&} in non-relativistic quantum theory we have the
Fermi's Golden Rule

( a— 3 Q _ 2%|<5|V1|04>|2 y (density offinagl' (40)

transition rat guantum stat

This is in the lowest order perturbation theory. For higher orders we have terms
with products of more interaction potential matrix elemets|).
In quantum field theory there is a counterpart to these matrix elements — the
S-matrix
<ﬁ|V]|Oz> + (higher—order term)s — <ﬁ|S|Oz> . (41)

On one sideS-matrix elements can be perturbatively calculated (knowing the
interaction Lagrangian/Hamiltonian) with the help of bgson series

S=1- i/d4x1 H(zy) + (_2—1)2 /d4$1 d*oy T{H(z ) H(z2)} + -+, (42)
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and on another, we have “golden rules” that associate these matrix elements with
cross-sections and decay widths.

Itis convenient to express these golden rules in terms df¢lieman invariant
amplitude M which is obtained by stripping some kinematical factors off.$he
matrix:

1

Sla) = 650 — i(27)*6* (ps — Pa) Mpa 3 43
(B]S]a) = dpa — i(2m)"0% (s — pa) M Zl(:[ﬁ T (43)
Now we have two rules:
e Partialdecayrateof — 1’ +2 +--- +n/
1 - n
dl' = — | Mga|? (2m)* 64 (p - 44
¢ Differential cross section for a scattering-2 — 1’ +2" 4+ --- +n’
do = e LRGP n) 4= = =) [
ua 2B, 2B, S ~ 11 (o) 32E’ ’
(45)
whereu,, is the relative velocity of particles 1 and 2:
. 2 _ 2,12
Uy = \/(pl p2) mims; (46)

B E, ’

and|M|? is the Feynman invariant amplitude averaged over unmeasured particle
spins (see Section 6.1). The dimension\df in units of energy, is

e for decaygM] =3 —n
e for scattering of two particlesM] =2 —n

wheren is the number of produced patrticles.
So calculation of some observable quantity consists of two stages:

1. Determination of M|2. For this we use the method of Feynman diagrams
to be introduced in the next section.

2. Integration over the Lorentz invariant phase space

. T A
dLips = (27)"4* = =) [ s -
p (2m)%6% (p1 + p2 — P} Pn) 11 (27)3 2
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5 Feynman diagrams

Example: ¢*-theory

1 1 g
i w242 0 I 4

e Free (kinetic) Lagrangian (terms with exactly two fields) determines parti-

cles of the theory and their propagators. Here we have just one scalar field:

¢ Interaction Lagrangian (terms with three or more fields) determines possible
vertices. Here, again, there is just one vertex:

\q’ /7
\\ /’¢
X
0,7 o
/7 q)\

We construct all possible diagrams with fixed outer particles. E.g. for scatter-
ing of two scalar particles in this theory we would have

- (SN

N ’ N * ’ \k/’-\\/
) 1 »
\\ //3 \%,// <
MA+2—-3+4)= X + X + X +
5 7 N ’ N ’ N
, N , N ’ N
’ 4N ’ N ’ N
5

In these diagrams time flows from left to right. Some people draw Feynman
diagrams with time flowing up, which is more in accordance with the way we
usually draw space-time in relativity physics.

Since each vertex corresponds to one interaction Lagrangian (Hamiltonian)
term in (42), diagrams with loops correspond to higher orders of perturbation
theory. Here we will work only to the lowest order, so we will usee diagrams
only.

To actually write down the Feynman amplitudé, we have a set dfeynman
rulesthat associate factors with elements of the Feynman diagram. In particular,
to get—i M we construct the Feynman rules in the following way:

¢ the vertex factor is just thetimes the interaction term in the (momentum
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space) Lagrangian with all fields removed:

\¢ 4
\\ //(])
. . ing field .
ZEIZ—Z%¢4 rem0\i_n>g ields A :_22 (47)
4! PN 4!
4 N
7 ¢\

¢ the propagator is times the inverse of the kinetic operator (defined by the
free equation of motion) in the momentum space:

Liee ORI o1 4 m2)p =0  (Klein-Gordoneq.)  (48)

Going to the momentum space using the substitutibr- —ip* and then
taking the inverse gives:
1
P —mHop=0 = .____4)_____. :p72—m2 (49)
(Actually, the correct Feynman propagatoi igp? — m? + ie), but for our
purposes we can ignore the infinitesimaterm.)

e External lines are represented by the appropriate polarization vector or spinor
(the one that stands by the appropriate creation or annihilation operator in
the fields (31), (35), (36) and their conjugates):

particle Feynman rule
ingoing fermion u
outgoing fermion U
ingoing antifermion v
outgoing antifermion v
ingoing photon et
outgoing photon ek
ingoing scalar 1
outgoing scalar 1

So the tree-level contribution to the scalar-scalar scattering amplitude in this
¢* theory would be just

—iM = —io (50)
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Exercise 13Determine the Feynman rules for the electron propagator and for the
only vertex of quantum electrodynamics (QED):

L= +ed —m)y — iFWF’“’ Fr = grAY — 9" A* . (51)

Note that also
p _ i) u(p,o)u(p,o) (52)

> . P2 —m?2 ’

i.e. the electron propagator is just the scalar propagator multiplied by the polar-
ization sum. It is nice that this generalizes to propagators of all particles. This is
very helpful since inverting the photon kinetic operator is non-trivial due to gauge
symmetry complications. Hence, propagators of vector particles are

_@ (gw _ p“zf;”)
massive: p.m m , (53)
NN\ p2 —m?
—ighv
massless: p " (54)

This is in principlealmostall we need to know to be able to calculate the
Feynman amplitude of any given process. Note that propagators and external-line
polarization vectors are determined only by the particle type (its spin and mass)
so that the corresponding rules above are not restricted only i ttheory and
QED, but will apply to all theories of scalars, spin-1 vector bosons and Dirac
fermions (such as the standard model). The only additional information we need
are the vertex factors.

“Almost” in the preceding paragraph alludes to the fact that in general Feyn-
man diagram calculation there are several additional subtleties:

¢ In loop diagrams some internal momenta are undetermined and we have to
integrate over those. Also, there is an additional factor (-1) for each closed
fermion loop. Since we will do tree-level diagrams only, we can ignore this.

e There are some combinatoric numerical factors when identical fields come
into a single vertex.

e Sometimes there is a relative (-) sign between diagrams.

e There is a symmetry factor if there are identical particles in the final state.

These will be explained if we encounter some case where they are relevant.
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6 e"e” — utp~ inQED

There is only one contributing tree-level diagram:

u(pla Ul)

We write down the amplitude using the Feynman rules of QED and following
fermion lines backwards. Order of lines themselves is unimportant.

. _ . v _/Lg v _ .
—iM = [u(ps, 03)(iey")v(ps, 04)] m [0(p2, 02) (i7" )u(py, 01)]
(55)
or, introducing abbreviation; = u(p;, 01),
62
M = ———[Usy,va] [y us] - (56)

(p1 + p2)?

Exercise 14 Draw Feynman diagram(s) and write down the amplitude for Comp-
ton scatteringye™ — ~ve™.

6.1 Summing over polarizations

If we knew momenta and polarizations of all external particles, we could calculate
M explicitly. However, experiments are often done with unpolarized particles so
we have to sum over the polarizations (spins) of the final particles and average
over the polarizations (spins) of the initial ones:

sum over final pol.
~~

11
MP=TMP= 55> > MP (57)
0109 0304

avg. over initial pol.

Factorsl /2 are due to the fact that each initial fermion has two polarization
(spin) states.
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(Question:Why we sum probabilities and not amplitudes?)
In the calculation of M |* = M* M, the following identity is needed

[y o] = [uf "y 0]t = vTy Ty 0u = [o97] . (58)
Thus,

64

(M? = A(p1 + p2)* > [aus] [@y v [y va] [027" 1] - (59)

01,2,3,4

6.2 Casimir trick

Sums over polarizations are easily performed using the following trick. First we
write > "[uy v ve][v27" uq ] With explicit spinor indicesy, 5,7, = 1,2, 3, 4:

Z ﬂlwﬁng ?727755“15 . (60)
0102

We can now move;; to the front (5 is just a number, element af vector, so
it commutes with everything), and then use the completeness relations (27) and
(28),

> ustiia = (P, +mi)sa
o1
Y vty = (P, —ma)s,

02

which turn sum (60) into

(pl +M1)sa 'YZg (?2 — M2) sy Vys = Tr[(iﬁl + ml)V“(I% —ma)y"]. (61)

This means that

64

AP = ST, + )y, = )| TG, = ), + mm(gz.)

Thus we got rid off all the spinors and we are left only with traces ofatri-
ces. These can be evaluated using the relations from the following section.

6.3 Traces and contraction identities ofy matrices

All are consequence of the anticommutation relatipyts 7/} = g**, {v*,7°} =
0, (v*)? = 1, and of nothing else!
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Trace identities

1. Trace of an odd number ofs vanishes:

1

Tr(yiafe cceqtonst) = Tr(yfghe et o29?)

(moving~?® over eachyti) = —-|-I’(’}/5’)’M'YM2 te 7’u2n+175)
(cyclic property of trace) = —Tr(’)/#l’)/#2 ce 7u2n+175'75)
— _Tr(,ymfy/u . ,,yu2n+1>
=0
2. Trl1=4
3.
2)

Try#y” = Tr(2g" —4"7") = 89" — Try"y* = 8¢ — Tryty”
= 2Tty =8¢ = Tryky" = 4g"”

This also implies:
Tr¢il5 =4da-b

4. Exercise 15Calculate T(y*y"+*+7). Hint: Move ~“ all the way to the
left, using the anticommutation relations. Then use 3.

Homework:Prove that Tgy#1~#2 - - - v#27) has(2n — 1)!! terms.

5. Tr(yPytinkz ... yr2n+1) = (), This follows from 1. and from the fact that
consists of even number ofs.

6. Try” = Tr(7"9°7%) = =Tr(3"7*9%) = =T =0
7. Tr(v5y*y¥) = 0. (Same trick as above, witff* # u, v instead ofy°.)
8. Tr(y Pyt y¥yP~7) = —dietP?, with °12% = 1. Careful: convention with

9123 — _1js also in use.

Contraction identities

1.
1 12 12 2
sziwAW7+v¢0=%w“=4
——
2gHv
2.
YAy ==+ 29" = =297
N~~~

—YuY* 295
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3. Exercise 16 Contracty y“y"~,.
4. Ay Py, = =297y
Exercise 17 Calculate traces ipM|2:

Tr{(p, + m)(p, —m2)y"] = ?
Tr((p, — ma)yu(py +ma)n] = ?

Exercise 18 Calculate| M |2

6.4 Kinematics in the center-of-mass frame

In eTe™ coliders ofterp; > m.,m,,i=1,...,4, sowe can take
m; — 0 “high-energy” or “extreme relativistic” limit
Then
E = " (o m)lon 00 + (1229 (69
(pl +p2)4 1 3 2 4 1 4 2 3

To calculate scattering cross-sectiowe have to specialize to some particular
frame @ is not frame-independent). Fere~ colliders the most relevant is the
center-of-mass (CM) frame:

E>my,m,

uwt¥ py = (E,—Ek)

Exercise 19 Expresg.M |2 in terms of £ and®.
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6.5 Integration over two-particle phase space

Now we can use the “golden rule” (45) for the-2 — 3+ 4 differential scattering
cross-section

11 1 —=
_ ——— ——— 2 i
do w252 2|M] dLips, (64)

where two-particle phase space to be integrated over is
d3p3 d3p4
om)32F5 (2m)3 2B,

First we integrate over four out of six integration variables, and we do this in
general framed-function makes the integration ovétp, trivial giving

dLips, = (2m)*0*(p1 + pa — ps — pa) ( (65)

dLip32 = 5(E1 + Ey — By — E4) d3p3 (66)
~~~

p3d|ps|dQs
Now we integrate oved|ps| by noting that; and E; are functions ofp;|

By = Ei(lps|) = \/pj+m3,
By = \[pi+mi=/p}+mi.

and byJs-function relation

(27()2 4E3E4

5 1.0
S(v+ B [pi 4 md) = ()] = PP o)
lps|=|p;"|

Here |ps| is just the integration variable arjﬂgo)\ is the zero off(|ps|) i.e. the
actual momentum of the third particle. After we integrate ovk&ps;| we put

p5”| — |psl.
Since P
/ _ 3 + 4
f (|p3|) - E3E4 |p3| ) (68)
we get
. Q
dLips, = [ps|d (69)

167T2(E1 + Eg) )
Now we again specialize to the CM frame and note that the flux factor is

AF Foug = 4\/(171 - p2)? — mim3 = 4|p:|(Ey + Es) | (70)
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giving finally
docu _ 1 |p3|
dQ) 647T2(E1 + E2)2 |p1|

Note that we kept masses in each step so this formula is generally valid for any
CM scattering.

For our particulae— et — p~pu™ scattering this gives the final result for dif-
ferential cross-section (introducing the fine structure constaate? / (4))

[M] . (71)

do a?
dQ 162
Exercise 20 Integrate this to get the total cross section

(14 cos?0) . (72)

Note that it is obvious that « «?, and that dimensional analysis requires
o o« 1/E?, so only angular dependen¢e + cos? #) tests QED as a theory of
leptons and photons.

6.6 Summary of steps

To recapitulate, calculating scattering cross-section (or decay width) consists of
the following steps:

. drawing the Feynman diagram(s)
. writing —iM using the Feynman rules
. squaringM and using the Casimir trick to get traces

1
2
3
4. evaluating traces
5. applying kinematics of the chosen frame
6

. integrating over the phase space

6.7 Mandelstam variables

Mandelstam variables, t andu are often used in scattering calculations. They
are defined (fol + 2 — 3 + 4 scattering) as

s = (p+p)
= (Pl P3)
u = (p1— p4)

Exercise 21 Prove thats + ¢ + v = m? + m3 + m2 + m?
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This means that only two Mandelstam variables are independent. Their main
advantage is that they are Lorentz invariant which renders them convenient for
Feynman amplitude calculations. Only at the end we can exchange them for “ex-
perimenter’s” variableg’ andd.

Exercise 22 Expresg. M |? for e"e™ — ' scattering in terms of Mandelstam
variables.
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Appendix: Doing Feynman diagrams on a computer

There are several computer programs that can perform some or all of the steps in
the calculation of Feynman diagrams. Here is one simple session with one of such
programsfeynCalc for Wolfram’s Mathematicawhere we calculate the same
process¢ et — u~ ', that we just calculated by hand.

FeynCalcDemo.nb 1

FeynCalc demonstration

This Mathematica notebook demonstrates computer calculation of Feynman invariant amplitude for
e~ e* - u~ ut scattering, using Feyncalc package.

First we load FeynCalc into Mathematica
In[1]:= << HighEnergyPhysics ‘fc*

FeynCalc 4.1.0.3b  Evaluate ?FeynCalc for help or visit www.feyncalc.org

Spin—averagedFeynman amplitude squared | M |? after using Feynman rules and applying the Casimir trick:

4
In[2]:= Msq= e— Contract [Tr[(GS[pl] +me) .GA[u]. (GS[p2] -me) .GA[V]]
4 (pl+p2)*
Tr[(GS[p4] -mm) .GA[u] . (GS[p3] +mm) .GA[V]]]

out[2]= (e* (64 mm? me? +32p3-pd me? +32mm? pl-p2 +32pl-pdp2-p3+32pl-p3p2-pd))

4(pl +p2)*

Traces were evaluated and contractions performed automatically. Now we introduce Mandelstam variables by substitu-
tion rules,

In[3]:= prod[a_, b_] :=Pair[Momentum[a], Momentum[b]];
mandelstam = {prod[pl, p2] » (s -me? -me?) /2, prod[p3, p4] » (s-mm? -mm?) /2,
prod[pl, p3] » (t-me? -mm?) /2, prod[p2, p4] » (t-me? -mm?) /2,
prod[pl, p4] > (u—me2 —mmz) /2, prod[p2, p3] » (u—me2 —mmz) /2, (pl+p2) » '\/;},

and apply these substitutions to our amplitude:

In[5]:= Msq /. mandelstam

out [5]= (¢* (64 mm* me? + 16 (s — 2mm?) me” + 8 (—-me” — mm” + 0 +8(—me? —mm? +u)° + 16 mm? (s - 2me?)))

452
This result can be simplified by eliminating one Mandelstam variable:

In[6]:= Simplify[TrickMandelstam[%, s, t, u, 2 me? +2mm2]]

2¢* 2me* +4 (mm? —u)me? +2mm?* + 5 +2u2 —4mm? u +2su)
2
N

out[6]=

If we go to ultra—relativistic limit, we get result in agreement with our hand calculation:
In(7]:= Simplify[%% /. {mm-> 0, me > 0}]

2¢* (2 +u?)

out[7]=
52



